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Abstract are used in the literature, and have been shown to pro-
duce good results in halftoning. For the rest of this pa-
Frequency weighted mean squared error (FWMSE) iper, we will use the form given in (1). We note that simi-
often used for measuring image quality. We construclar results and conclusions in the paper, with suitable
examples to show a weakness of FWMSE when appliethodifications, can also be applied when using (3).
to halftones. We then consider a mixture distortion that
consists of FWMSE and a dot distance term to explic-, N

itly account for the spatial arrangement of dots. »|  mean W,
) squared ’
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{a)
The goal of halftoning is to generate bi-level images from

continuous tone images so that they appear similar té.,. B
the human visual system. To give an indication of the " Ve mean Wonn
quality of halftones, one often uses a distortion criterion squared —————*
d(X,» bne to measure the differences between the half error
tone bm n and its continuous tone counterpaftA dis- (b}
tortion measure is also essential for optimization based

halftoning algorithms;” where one finds a halftorig, ,
from a continuous tone image,, so that the average
distortionEd(X,, » b, is minimized.

Frequency weighted mean squared error (FWNtSE)
perhaps the most popular distortion criterion that is used in  For a halftone to be perceived as high quality, it is
practice, partly because of its simplicity and tractability.essential that the spatial distribution of halftone dots in
Let the pixel values of the continuous tone imaggo be  smooth areas to be as uniformly distributed as possible.
real numbers between 0 (black) and 1 (white), and the biFhis is consistent with thblue noise(high frequency
level halftoneb,, ,to take on values in {0,1}. Let the instan- noise) characteristi€, meaning that the error spectra
taneous frequency weighted squared error at pixel locatidnetween continuous tone and halftone images should
(m,n be preferably be concentrated in the high frequency range.

FWMSE, however, does not explicitly address the spa-
Wirn = X = 3 Vi Bineien1) (1) tial distribution of halftone dots.
kil In this paper we examine FWMSE in detail, and give
wherey,, is an impulse response that approximates thexamples to show that a low FWMSE is not always con-
characteristics of the human visual system. The FWMSEistent with a smooth spatial distribution of halftone dots.
is given by The idea of considering the distances between halftone
dots has been successfully used in error diffusion to
W(x,b) = wp,, (2)  generate high quality resulés-ere we propose a new dis-
mn tortion criterion that explicitly takes the spatial uniformity
where the sum is taken over all the pixels in the imageof halftone dots into account. Such a distortion criterion

The operation of (1) can be represented by the blockas been used in conjunction with a tree coding algo-
diagram in Figure 1(a). It makes good intuitive sense adgthm to generate halftones of very high quatity.
it suggests that we measure the difference between an origi-
nal continuous tone image and its correspondaigggtne A Deficiency of Frequency Weighted Mean

—— >
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Figure 1. Two different forms of frequency weighted mean
squared error.

image as the halftone is perceived by the human visual Squared Error
system. Another form of FWMSE that is also popular in
the literature is obtained by replacing , with Digital halftoning, by its nature, relies on the spreading

of black and white pixels to give a perception of gray
. levels. For high visual quality, one prefers the spatial
Winn = E;Vkv' (xm-kvn-' _bm-k,n—l)g ' (3)  distribution of black and white pixels to be as “uniform”
' as possible, since uniformly spaced dots generally gives
which can be represented by Fig. 1(b). In this form, botlvisually smooth renditions of graylevels. Consider a con-
Xn,andb,, are low pass filtered by, . Both (1) and (3) stant gray patch of size 8 by 8 as
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)gm—o.125 m =0,1,...,7; n=0,1,...,7. 4 2 4 2 16 2 4 2(

The array9,,,andq,,,in Fig. 2 represent two pos- 82 4 2 16 2 4 2 OE
sible halftone dot patterns fay, . Note that the average M 2 16 2 4 2 64 20
graylevels for botlp,, ,andq,, ,are 1/8, as they both con- O 6 2 4 2 0 2 48
tain 8 entries of 1's out of 64. The difference between |Qk||2 =U %
Pnnandg,, ,is that the 1's at locations (2,2) and (6,6) in ’ 616 2 4 2642 4 2.
Pm.. has been moved to locations (1,1) and (7,@),in* @2 4 2 0 2 4 2 16
It is perhaps obvious that the dot arrangemer,inis U4 2 64 2 4 2 16 2U
more “regular” compared to that @y, , and hence,, ,is 52 0 2 4 2 16 2 4f

usually considered to be a better halftone rendition of

Xn We therefore would like to have a distortion mea-  Note again thaP, > = 64 andQ, > = 64, each cor-

sure that favorg,, . responds to the entry at the upper left corner of the re-
spective array. For the sake of simplicity, let us assume
that the filterv,,has a symmetric frequency response of

the form
0l a By 0 y B aO
b o a By Oy B af
0 0 O
:(3 B By y B BD
vV oy vy O vy vyg
k| — O
%4 0 00640 0 O
oy v v v O vy vy vyO
B BBy Oy B BH
BFr o By 0 y B aff
q. Note that the array®) % 1Q.|? andV,, are all ar-

ranged in dypical DFT fashionThat is, the valu¥,,=

1 at the upper left hand corner corresponds to dc, while
the row and column of zeros i}, correspond to one half

of the sampling frequencies in the “vertical” and “hori-

Figure 2. Two possible halftone dot patterns for a constan ontal” directions. The assumption here tigt= 0 for

_ =4 orl = 4 is not necessary but it simplifies our calcula-
gray patch at the graylevel g = 0.125. Here, the graylevel val-,. . . . :
AN . tions in this example. Since we want the filter to be low
ues for black and white pixels are 0 and 1, respectively.

pass, the parameters should satistyd > (3 =y = 0.
The 8 by 8 DFT ok, , is

It is evident from (1) that the spatial distribution of
the black and white pixels is nekplicitly reflected by X = B ifk=1=0
the FWMSE. It is therefore conceivable that a halftone kl ™ Ep otherwise
where the black and white dots are spatially distributed
“more uniformly” can incur a larger FWMSE than a more Using Parserval theorem with (2), the FWMSE be-
irregularly distributed dot array. In fagt, ,andq,,,of Fig.  tweenx,,andp,,can be calculated as
2 presents one such example. To see this, we calculate

the magnitude squares of the DFT’sppf, andq,, , as W(x,p) _1 3 |P |2|V |2 - 4p?
l 64 (Hxo KT
4 0 0 0 64 0 0O OO Similarly,
0 U
© 0 0000 0 0f W(x,0) = 0.2502 + 3p2 + 1.75.
00 0 64 0 0 0 64 0O . . .
0 0 We like to choose, B andy subject to the constraint
|Pk||2 _m© 0000 0 0 0 l1=>a=pB=y=0, so thaW(x,p) > W(x,0). That is, we
%4 0 0 0640 0 0% like to satisfy the inequality
oo 0000 0 0 00 B2 > 0.25: + 1.757. (4)
D 064 0 0 0 64 OF ,
DO 00000 O OD There are infinite number of choices of the param-
B B eters that are consistent with, being a low pass filter
and and that (4) is satisfied. We can, for example, choose
a =0.8, B=0.5 and y=0.2. (5)

We have shown that althougd,, is visually pre-
ferred overq,, as a halftoneq,, incurs a smaller
FWMSE tharp,, . We have used for simplicity an 8 by 8

* The coordinate system is defined such that the origin (0,0) i
located at the upper left corner of the pattern.
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example here, where the frequency response of the vihe number of black pixels in a halftone must be larger
sual filterV,, may appear to vary rather abruptly from than the number of white pixels in the corresponding
the pass band to the stop band. If we want an examptegion so that the graylevel is rendered correctly. In such
where the visual filter would have a finer frequency reso€ase the white pixels are called minority pixels. Simi-
lution, e.g., specified by a 16 by 16 point or bigger DFT Jarly, the black pixels are minority pixels when the local
we can replicate the dot pattepys, andq,, ,to the desired graylevel has a value between 0.5 and 1. Let

size before we take the DFT. The conclusion will still come

out to be the same. More importantly, note that the se- [ if0<g<05

quence9,,,anddg,, as well as the responses specified Pmn = Ep if05<g<1

in (5) only serve as a convenient example. There are many

other halftone dot patterns for various continubaise  be the value of the minority pixel at the location,f).
images that can lead to the same conclusion, i.e., thBased on an approximation using square packing, one
the FWMSE does not generally reflect the uniformity incan define the principal distandg* as the average dis-
the distribution of black and white dots in a halftone. tance between minority pixels in a halftone. Specifically,

A Mixture Distortion Criterion B (1/g if0<g<05

dp(9) =0
p .
B1/@- if0.5<g<1
The example in the previous section demonstrates a -9 g

shortcoming of FWMSE. It is evident that if we use thewhereg is the local gray level. Note thdj(g) is infinite
FWMSE with an optimization based halftoning algo-forg=0 org=1, as it should, because no minority pixel
rithm, we can obtain suboptimal results in the sense thahould be inserted for complete black or white gray val-
the dot patterns in the output halftones may not be of thees. Letd,, , be the distance from the positiom,() to
highest quality. Previously a high quality error diffusionthe nearest minority pixel. We can define a distortion
algorithm has been design that explicitly controls themeasure using the distances between minority pixels by
distances between halftone d&&Ve now consider a

new distortion criterion that explicitly incorporates in- O if diyn 2 dy (Xn)

formation on the spatial distribution of halftone dots. This o 0 -
. . . . . . D andbmn pmn
distortion criterion has been used with a tree coding al- ; ' '
. . . E if dmn<dp(xmn)
gorithm to generate high quality halftorfes. Upp =0 0 ' ’ 6)
We use the concept afinority pixelsas defined by | andby,, # Py,
Ulichneyt Specifically, if the gray scale of a local Ly (X n) = A O otherwise

smooth region in an image is between 0 and 0.5, then % dp(Xmn) H

no penaity, e, u_ =0 penalty, i.e, u, >0

(a) {b)

penalty, e, u >0 no penalty, e, u, =0

() (d)

Figure 3. Examples showing the four different situations in the dot distance based distortion measure of (6). In these examples
we have g = 0.75, r = 0 (minority pixel is black) and dp(g) = 2. The circle in each case is of radius 2, which equals tpal princ
distance dp(g) at the graylevel used in this example.
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Note thatu,, ,favors putting a majority pixel atm,n preference to a halftone rendition that is considered to
if the distance from the nearest minority pixel is lessbe less visually favorable than another rendition. We have
thand,(x,), while it favors a minority pixel ang,n) if also proposed a mixture distortion criterion, that is a
the distance from the nearest minority pixel is larger thamveighted combination of FWMSE and a measure that
dy(Xp.0)- reflects the distance between halftone dots. Such a dis-

Consider an example with= 0.75. Hence we have tortion criterion has been used elsewhere to generate high

p =0, i.e., the minority pixels are black pixels, aha)
= 2. We have drawn a circle of radius 2 in the four cases
of Fig. 3 centered at the pixel location being considered.
For the two cases in Fig. 3(a) and (b), all the existing
minority pixels in the halftone are more than a distance
of 2 away from the current location. Since the minority1.
dots in the current neighborhood are too sparse compared
to d,(g), we favor the case of having a black pixel in the2.
center of the circle. Consequently we assign a penalty to
Fig. 3 (b), and no penalty to Fig. 3 (a). On the other
hand, the distance fromm(n) to the nearest minority 3.
pixel is onlyy/2 in Fig. 3 (c) and (d), which is smaller
than the principal distance. In such a situation, we favor
having a white pixel at positiom(,n). Consequently, we
put a penalty to Fig. 3 (¢), and no penalty to Fig. 3 (d)4.
The specific penalty as defined in (6) is given by the
relative error between the principal distance and the ac-
tual distance to the nearest minority pixel. 5.
Using the FWMSE and (6), we define a mixture dis-
tortion measure as

an = Wm,n + l‘lum,n (7)

wherep is an experimentally determined parameter thasé.
controls the weighting betweew, ,andu,, ,.*” This mix-

ture distortion criterion evidently contains a penalty term

that explicitly depends on the distance between halftone.
dots. It is important to note that the principal distance is

a function of the pixel value of the graylevel image, and

hence it varies from locations to locations within thes.
image. As a result, (7) encourages the minority dots to
be spread out within local neighborhoods in a fashion

that is consistent with the average local graylevels. /2.
similar approach, that explicitly considers the distance

between minority pixels, has been introduced to error

diffusiont? to obtain good output quality. We have suc-10.

cessfully used (7) in conjunction with a tree coding al-
gorithm to generate very high quality halftoriés.

11.

Conclusion

12.

We have considered in this paper a deficiency of the fre-
guency weighted mean squared error (FWMSE) for de-
scribing the quality of halftones, because it does not
explicitly take into account the distance between half-

tone dots. Examples are given using halftone renditions
of a constant gray patch that shows a FWMSE can give

guality halftones.
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